Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.

Identifieur interne : 000162 ( Main/Exploration ); précédent : 000161; suivant : 000163

Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.

Auteurs : Ayyappa Kumar Sista Kameshwar [Canada] ; Wensheng Qin [Canada]

Source :

RBID : pubmed:28123349

Descripteurs français

English descriptors

Abstract

In literature, extensive studies have been conducted on popular wood degrading white rot fungus, Phanerochaete chrysosporium about its lignin degrading mechanisms compared to the cellulose and hemicellulose degrading abilities. This study delineates cellulose and hemicellulose degrading mechanisms through large scale metadata analysis of P. chrysosporium gene expression data (retrieved from NCBI GEO) to understand the common expression patterns of differentially expressed genes when cultured on different growth substrates. Genes encoding glycoside hydrolase classes commonly expressed during breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions including simple customized and complex natural plant biomass growth mediums. Genes encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were differentially expressed in natural plant biomass growth mediums. Based on these results, P. chrysosporium, on natural plant biomass substrates was found to express lignin and hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) class enzymes, in early stages. It was observed that the fate of P. chrysosporium transcriptome is significantly affected by the wood substrate provided. We believe, the gene expression findings in this study plays crucial role in developing genetically efficient microbe with effective cellulose and hemicellulose degradation abilities.

DOI: 10.7150/ijbs.17390
PubMed: 28123349
PubMed Central: PMC5264264


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metadata Analysis of
<i>Phanerochaete chrysosporium</i>
Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.</title>
<author>
<name sortKey="Kameshwar, Ayyappa Kumar Sista" sort="Kameshwar, Ayyappa Kumar Sista" uniqKey="Kameshwar A" first="Ayyappa Kumar Sista" last="Kameshwar">Ayyappa Kumar Sista Kameshwar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1</wicri:regionArea>
<wicri:noRegion>P7B 5E1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qin, Wensheng" sort="Qin, Wensheng" uniqKey="Qin W" first="Wensheng" last="Qin">Wensheng Qin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1</wicri:regionArea>
<wicri:noRegion>P7B 5E1</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28123349</idno>
<idno type="pmid">28123349</idno>
<idno type="doi">10.7150/ijbs.17390</idno>
<idno type="pmc">PMC5264264</idno>
<idno type="wicri:Area/Main/Corpus">000175</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000175</idno>
<idno type="wicri:Area/Main/Curation">000175</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000175</idno>
<idno type="wicri:Area/Main/Exploration">000175</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metadata Analysis of
<i>Phanerochaete chrysosporium</i>
Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.</title>
<author>
<name sortKey="Kameshwar, Ayyappa Kumar Sista" sort="Kameshwar, Ayyappa Kumar Sista" uniqKey="Kameshwar A" first="Ayyappa Kumar Sista" last="Kameshwar">Ayyappa Kumar Sista Kameshwar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1</wicri:regionArea>
<wicri:noRegion>P7B 5E1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qin, Wensheng" sort="Qin, Wensheng" uniqKey="Qin W" first="Wensheng" last="Qin">Wensheng Qin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1</wicri:regionArea>
<wicri:noRegion>P7B 5E1</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of biological sciences</title>
<idno type="eISSN">1449-2288</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cellulose (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Metadata (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (genetics)</term>
<term>Phanerochaete (metabolism)</term>
<term>Polysaccharides (metabolism)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellulose (métabolisme)</term>
<term>Métadonnées (MeSH)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (génétique)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Polyosides (métabolisme)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Transcriptome (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulose</term>
<term>Fungal Proteins</term>
<term>Polysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phanerochaete</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phanerochaete</term>
<term>Protéines fongiques</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
<term>Phanerochaete</term>
<term>Polyosides</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Metadata</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Métadonnées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In literature, extensive studies have been conducted on popular wood degrading white rot fungus,
<i>Phanerochaete chrysosporium</i>
about its lignin degrading mechanisms compared to the cellulose and hemicellulose degrading abilities. This study delineates cellulose and hemicellulose degrading mechanisms through large scale metadata analysis of
<i>P. chrysosporium</i>
gene expression data (retrieved from NCBI GEO) to understand the common expression patterns of differentially expressed genes when cultured on different growth substrates. Genes encoding glycoside hydrolase classes commonly expressed during breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions including simple customized and complex natural plant biomass growth mediums. Genes encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were differentially expressed in natural plant biomass growth mediums. Based on these results,
<i>P. chrysosporium,</i>
on natural plant biomass substrates was found to express lignin and hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) class enzymes, in early stages. It was observed that the fate of
<i>P. chrysosporium</i>
transcriptome is significantly affected by the wood substrate provided. We believe, the gene expression findings in this study plays crucial role in developing genetically efficient microbe with effective cellulose and hemicellulose degradation abilities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28123349</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1449-2288</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>International journal of biological sciences</Title>
<ISOAbbreviation>Int J Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Metadata Analysis of
<i>Phanerochaete chrysosporium</i>
Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.</ArticleTitle>
<Pagination>
<MedlinePgn>85-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7150/ijbs.17390</ELocationID>
<Abstract>
<AbstractText>In literature, extensive studies have been conducted on popular wood degrading white rot fungus,
<i>Phanerochaete chrysosporium</i>
about its lignin degrading mechanisms compared to the cellulose and hemicellulose degrading abilities. This study delineates cellulose and hemicellulose degrading mechanisms through large scale metadata analysis of
<i>P. chrysosporium</i>
gene expression data (retrieved from NCBI GEO) to understand the common expression patterns of differentially expressed genes when cultured on different growth substrates. Genes encoding glycoside hydrolase classes commonly expressed during breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions including simple customized and complex natural plant biomass growth mediums. Genes encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were differentially expressed in natural plant biomass growth mediums. Based on these results,
<i>P. chrysosporium,</i>
on natural plant biomass substrates was found to express lignin and hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) class enzymes, in early stages. It was observed that the fate of
<i>P. chrysosporium</i>
transcriptome is significantly affected by the wood substrate provided. We believe, the gene expression findings in this study plays crucial role in developing genetically efficient microbe with effective cellulose and hemicellulose degradation abilities.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kameshwar</LastName>
<ForeName>Ayyappa Kumar Sista</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Wensheng</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Australia</Country>
<MedlineTA>Int J Biol Sci</MedlineTA>
<NlmUniqueID>101235568</NlmUniqueID>
<ISSNLinking>1449-2288</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8024-50-8</RegistryNumber>
<NameOfSubstance UI="C007916">hemicellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071253" MajorTopicYN="N">Metadata</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Bioconductor</Keyword>
<Keyword MajorTopicYN="Y">Carbohydrate Active Enzyme database (CAZy).</Keyword>
<Keyword MajorTopicYN="Y">GEO2R</Keyword>
<Keyword MajorTopicYN="Y">Gene Expression Omnibus (GEO)</Keyword>
<Keyword MajorTopicYN="Y">Lignocellulose</Keyword>
<Keyword MajorTopicYN="Y">Phanerochaete chrysosporium</Keyword>
<Keyword MajorTopicYN="Y">Transcriptome</Keyword>
</KeywordList>
<CoiStatement>The authors have declared that no competing interest exists.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28123349</ArticleId>
<ArticleId IdType="doi">10.7150/ijbs.17390</ArticleId>
<ArticleId IdType="pii">ijbsv13p0085</ArticleId>
<ArticleId IdType="pmc">PMC5264264</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1988 Jul 25;263(21):10401-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3134347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Jun 20;8:90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26136828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 Jan;47(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15551134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1991 Mar;137(3):541-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Aug;152(4):1487-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1453-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 11;272(15):10169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9092563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 May;45(5):638-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18308593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1996 Dec 13;253(3):303-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9003317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Dec;5(12):2128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17056741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jun;42(11):e91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2002 Jun;5(2):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12180781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2010 May 26;58(10):6141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20411987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Jun 1;235(1):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jan;79(2):488-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23124232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3246-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2006 May;152(Pt 5):1507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6138-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22132148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2009 Sep 04;5(6):578-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19774110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:53-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 1989;9(2):61-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2509081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 May;43(5):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Jan 21;226(2):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9931476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Nov-Dec;30(6):1575-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1988 Jan 4;170(3):575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3338453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 1986 Apr;12(2):135-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3521491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:263-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 2007;108:67-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2013 Jun;14(4):230-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24294104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Apr 20;43(7):e47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Sep 02;13:444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22937793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):4871-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Expr Patterns. 2014 Mar;14(2):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24480777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D675-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Dec;23(12):476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1962 Feb;83:400-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14469205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 May;40(10):4288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22287627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Mar 21;6(1):41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23514094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2008 Apr;9(2):321-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Apr;63(4):1298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9097427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Oct 1;107(2):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20552664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Aug 21;581(21):3915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):338-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18430603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2003 Jan;60(5):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12536250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Dec;8(12):563-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14659702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(13):4499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2006 Jun;70(2):283-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):483-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Sep;80(18):5828-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25015893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Oct;80(20):6316-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25107961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):719-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:521-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18518825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Jul 02;5(1):45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Oct;102(19):9096-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jun 30;82(14 ):4387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Oct;270(1):46-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12905071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):384-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2005 Jul 21;118(1):17-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Aug;28(8):799-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16927300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Sep 15;268(26):19364-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8366083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Nov;81(22):7802-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26341198</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Kameshwar, Ayyappa Kumar Sista" sort="Kameshwar, Ayyappa Kumar Sista" uniqKey="Kameshwar A" first="Ayyappa Kumar Sista" last="Kameshwar">Ayyappa Kumar Sista Kameshwar</name>
</noRegion>
<name sortKey="Qin, Wensheng" sort="Qin, Wensheng" uniqKey="Qin W" first="Wensheng" last="Qin">Wensheng Qin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000162 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000162 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28123349
   |texte=   Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28123349" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020